
p\Rsx^V7-cn -oco7c 
REPORT DOCUMENTATION PAGE' 

Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing 
the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information 
Operations and Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED   y ß ,r 9_y <^ 1 / fJAf 97 

FINAL TECHNICAL REPORT 
4. TITLE AND SUBTITLE 

OPTIMIZATION PROBLEMS IN MULTITARGET/MULTISENSOR TRACKING 

6. AUTHOR(S) 

Aubrey B. Poore 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Colorado State University 
Department of Mathematics 
Fort Collins, BO 80523 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Office of Scientific Research 
AFOSR/NM 
110 Duncan Avenue Suite B115 
Boiling AFB, DC 20332-8050 

S. FUNDING NUMBERS 

F49620-95-1-0136 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED 

-©EC ,OTIAl^^CTEPa 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The ever-increasing demand in surveillance is to produce highly accurate target and track identification and estimation in 
real-time, even for dense target scenarios and in regions of high track contention. The use of multiple sensors, through mor 
varied information, has the potential to greatly enhance target identification and state estimation.  For multitarget tracking, 
the processing of multiple scans all at once yields the desired track identification and accurate state estimation; however, one 
must solve an NP-hard data association problem of partitioning observations into tracks and false alarms in real-time, this 
report summarizes the development of a multisensor-multitarget racker based on the use of near-optimal and real-time 
algorithms for the data association problem and is divided into several parts. The first part addresses the formulation of 
multisensor and multiscan processing of the data association problem as conbinatorial optimazation problem, the new 
algorithms under devleopment for this NP-hard problem are based on a recursive Lagrangian relaxation scheme, construct 
near-optimal solutions in real-time, and use a variety of techniques such as two-dimensional assignment algorithms, a bundle 
trust region method for the nonsmooth optimization, and graph theoretic algorithms for problem decomposition. A brief 
compuational complexity analysis as well as a comparison with some additonal heuristic and optimal algorithms is included tb 
demonstrate the efficiency of the algorithms, new results on numerical efficiency and increased robustness for track 
maintenance are also discussed. Theis program has produced two U.S. patents with a thrid pending and has developed the 
basis for the Best of Breed Tracker Conest winner at Hansocm AFB in 1996. 
14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

16. PRICE CODE 

20. LIMITATION OF 
ABSTRACT 

Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHSIDI0R, Oct 94 



FINAL TECHNICAL REPORT Äj)(y—^ 

for 

OPTIMIZATION PROBLEMS IN 

MULTITARGET/MULTISENSOR TRACKING 

AFOSR Grant Number F49620-95-1-0136 

by 

Aubrey B. Poore 

Department of Mathematics 

Colorado State University 

Fort Collins, CO 80523 

Email: poore@math.colostate.edu 

Phone: 970-491-6695 

ABSTRACT 

The ever-increasing demand in surveillance is to produce highly accurate target and track identification 

and estimation in real-time, even for dense target scenarios and in regions of high track contention. The use of 

multiple sensors, through more varied information, has the potential to greatly enhance target identification 

and state estimation. For multitarget tracking, the processing of multiple scans all at once yields the desired 

track identification and accurate state estimation; however, one must solve an NP-hard data association 

problem of partitioning observations into tracks and false alarms in real-time. This report summarizes the 

development of a multisensor-multitarget tracker based on the use of near-optimal and real-time algorithms 

for the data association problem and is divided into several parts. The first part addresses the formulation of 

multisensor and multiscan processing of the data association problem as a combinatorial optimization prob- 

lem. The new algorithms under development for this NP-hard problem are based on a recursive Lagrangian 

relaxation scheme, construct near-optimal solutions in real-time, and use a variety of techniques such as 

two-dimensional assignment algorithms, a bundle trust region method for the nonsmooth optimization, and 

graph theoretic algorithms for problem decomposition. A brief computational complexity analysis as well as 

a comparison with some additional heuristic and optimal algorithms is included to demonstrate the efficiency 

of the algorithms. New results on numerical efficiency and increased robustness for track maintenance are 

also discussed. This program has produced two U.S. patents with a third pending and has developed the 

basis for the Best of Breed Tracker Contest winner at Hanscom AFB in 1996. 
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1    Introduction 

The ever-increasing demand in surveillance is to produce highly accurate target and track identification and 

estimation in real-time, even for dense target scenarios and in regions of high track contention. The use 

of multiple sensors, through more varied information, has the potential to greatly improve state estimation 

and track identification. This approach is part of a much broader problem called data fusion, which for 

military applications is defined as "a multilevel, multifaceted process dealing with the detection, association, 

correlation, estimation and combination of data and information from multiple sources to achieve refined 

state and identify estimation, and complete and timely assessments of situation and threat" [55]. The various 

problems are generally partitioned into three or more levels: (1) fused position (state) and identity, (2) 

hostile or friendly military situation assessments, and (3) hostile force threat assessments. (Comprehensive 

discussions can be found in the books of Waltz and Llinas [55] and Hall [15].) Level 1 deals with single and 

multisource information involving tracking, correlation, alignment, and association by sampling the external 

environment with multiple sensors and exploiting other available sources. Numerical processes thus dominate 

Level 1; symbolic reasoning involving various techniques from artificial intelligence permeate Levels 2 and 

3. This report focuses on Level 1 data fusion with the goal being to use multiple sensors to achieve superior 

state estimation and track identification. 

Sensor fusion systems vary greatly depending on the particular needs of a surveillance system. Key 

issues in the design of such a system include sensor type (active or passive), sensor location (distributed 

or collocated), and the level of association, which ranges from sensor level fusion to centralized fusion with 

hybrids in between. Although there are many such issues, the central problem in any surveillance system is 

the data association problem of partitioning measurements into tracks and false alarms. To explain this data 

association problem, we must first address the levels of association. 

At one extreme is sensor level tracking, wherein each sensor forms tracks from its own measurements and 

then the tracks from the sensors are fused in a central location. Once the correlation is complete, one then 

combines the tracks with appropriate modification in the statistics [12]. Compared with central level fusion, 

the advantages include the reduced communication costs between the sensors and central processing unit 

and easier data association. The disadvantages are that combined track estimates tend to be worse than in 

central-level fusion and the error independence assumptions in data association are no longer valid, thereby 

introducing additional complexity into the problem [10, 12]. At the other extreme is centralized fusion in 

which sensors send measurements to a central processing unit where they can be combined to give superior 

state estimation [10] (compared to fusion of sensor level tracks). The difficulties are generally claimed to be 

data association (our strength), communication costs between the sensor and central processing unit, and 

the loss of the tracking capability if the central processing unit becomes inoperative. In reality, current 

and proposed sensor fusion systems for any surveillance system make use of both systems. Certainly, one 

can treat a hybrid of these two systems by sending the observations associated with a track obtained at 

the sensor level to a central processing unit and treat the association as in centralized fusion [10]. Having 



explained the level of data association, we now return to a brief overview of the methods of data association 

for central and some hybrid central-sensor level tracking. 

The existing algorithms range from single scan or sequential processing to multiscan processing. Methods 

for the former include nearest neighbor, one-to-one or few-to-one assignments, and all-to-one assignments as 

in the joint probabilistic data association (JPDA) [4] in single sensor tracking. Problems involving one-to- 

one or few-to-one assignments are generally formulated as (two-dimensional) assignment or multi-assignment 

problems for which there are some excellent algorithms [8]. This methodology is real-time but can result in 

a large number of partial and incorrect assignments, particularly in dense or high contention scenarios, and 

thus incorrect track identification. The difficulty is that decisions, once made, are irrevocable, so that there 

is no mechanism to correct misassociations. The use of all observations in a scan (e.g., JPDA) to update 

a track moderates the misassociation problem and has been successful for tracking a few targets in dense 

clutter [4]. 

Deferred logic techniques consider several data sets or scans of data from multiple sensors all at once 

in making data association decisions. At one extreme is batch processing in which all observations (from 

all time) are processed together, but this is computationally too intensive for real-time applications. The 

other extreme is sequential processing. Deferred logic methods between these two extremes are of primary 

interest in this work. The key advantage of this approach is the ability to change data association decisions 

over several of the most recent scans of data. It is this feature that leads to superior track estimation. The 

principal deferred logic method used to track large numbers of targets in low to moderate clutter is called 

multiple hypothesis tracking (MHT) in which one builds a tree of possibilities, assigns a likelihood score based 

on Bayesian estimation, develops an intricate pruning logic, and then solves the data association problem by 

explicit enumeration schemes. The fundamental limitation of MHT, as it now exists, is that it is an NP-hard 

combinatorial optimization problem, so that in dense scenarios and high track contention or with multiple 

sensor input, the time required to solve this problem optimally can grow exponentially with the size of the 

problem. This failure is not graceful, i.e., the method is not robust with respect to real-time needs. Thus 

to make MHT viable, near-optimal algorithms are needed to solve the data association problems to the noise 

level in real-time. This is precisely the subject of this research program and report. 

As described in the following sections, what has been achieved in this research program is, arguably, the 

basis for the best best tracking system in the nation for tracking multiple objects with multiple sensors. The 

report is organized as follows. Section 2 presents an overview of the research objectives and achievements 

in this research program. The technical aspects of the program are described in Sections 3 through 8. 

Section 3 formulations multisensor and multiscan processing of the data association problem as an NP-hard 

combinatorial optimization problem. Next, an overview of some of the near-optimal and real-time algorithms 

for solving this problem is presented in Section 4. The algorithms under development are based on a recursive 

Lagrangian relaxation scheme, construct near-optimal solutions in real-time, and use a variety of techniques 

ranging from two-dimensional assignment algorithms, a bundle trust region method for the nonsmooth 



optimization, graph theoretic properties for problem decomposition, and a branch and bound technique for 

small solution components. Other continuous relaxations are discussed in Section 5. Section 6 presents 

a computational complexity analysis as well as a comparison with some additional heuristic and optimal 

algorithms to demonstrate the efficiency of the algorithms. Our most recent work on track maintenance and 

hot starts for track maintenance is presented in Sections 7 and 8, respectively. Finally, Section 9 lists the 

technical specification for this research program. 

2    Brief Overview of Objectives and Accomplishments 

' This section contains a brief overview of the research objectives and accomplishments. As discussed in the 

introduction, the data association methods for tracking multiple objects using multiple sensors can be divided 

into sequential, including JPDA and two-dimensional assignment methods, and deferred logic methods. 

The two approaches to these NP-hard deferred logic methods are an enumerative methods called multiple 

hypothesis tracking (MHT) and relaxation based that include Lagrangian as well as linear programming and 

other continuous relaxation based methods developed over the last six years. These relaxation methods have 

been demonstrated to be superior in an national contest held at Hanscom AFB culminating in 1996 with the 

announcement that Lockheed-Martin of Owego, NY had been declared as the winner of the Best of Breed 

Contest for the best tracking system in the nation for the next tracking update for the Air Force AWACS. The 

Lockheed-Martin technology was based on the 1993 CSU Tracker that incorporates the Lagrangian relaxation 

methods developed with partial support form AFOSR and incorporated into U.S. Patents 5,406,289 [5] and 

5,537,119 [48] with a third pending patent [49] as listed below. 

The following sections briefly summarize the objectives and accomplishments of this research program. 

2.1 Research Objectives 

The overall objective of this research program has been the formulation of mathematical models for tracking 

multiple objects with multiple sensors and algorithms that solve these problems to the noise level in the 

problem in real-time for Air Force applications. 

2.2 Problem Formulation 

The formulation of the multisensor-multitarget tracking as a multidimensional assignment problem with a 

complete derivation of the expressions for the cost coefficients was developed in the work Poore [31, 32] and 

will not be further addressed here. 



2.3 Data Association Algorithms 

In our work through 1994, we developed a class of algorithms that is extensively described in several pub- 

lications and is included in the first patent [5]. Starting with this research contract, broad classes of new 

Lagrangian relaxation algorithms were developed and incorporated into an issued patent [48] and a pending 

patent [49]. 

2.4 A Brief Comparison of the Algorithms 

In our prior work [5, 38, 40], we relaxed an iV-dimensional assignment problem to an (N - l)-dimensional 

one, which is NP-hard for N > 3, by relaxing one set of constraints. The problem of restoring feasibility is 

then formulated as a two-dimensional assignment problem. 

In work for which a U.S. patent was filed in 1995, we have developed broad classes of relaxation based 

algorithms that can be described as follows. One can relax an iV-dimensional assignment problem to an 

M-dimensional one by relaxing (N - M) sets of constraints for 2 < M < N - 1. The problem of recovering 

a feasible solution to the original iV-dimensional problem is then formulated as an (JV - M + l)-dimensional 

one. The case M = N - 1 corresponds to our prior work and M = 2, to the work currently described in this 

report. All cases 2<M<iV-lare developed in U.S. Patent [48]. Although more complicated than the 

current algorithm, they are particularly well-suited to parallel implementation with a few, say ten processors. 

The complication is that one must obtain reasonable good solutions of NP-hard relaxed problems in order 

to compute good subgradient and function values for the nonsmooth optimization phase. This difficulty is 

completely avoided only for the case M = 2 since the subproblem is computed optimally. Further technical 

explanations are given in Section 4. 

2.5 Patents and Publications 

Papers published [11, 13, 32, 43, 33, 48, 49, 44, 47, 34, 45, 17, 16, 46, 35, 36] during this research program 

are listed in the Section 9.3. We list here the patents [5, 48, 49]. 

a. Thomas N. Barker, Joseph A. Persichetti, Aubrey B. Poore, Jr., and R Rijavec, Method and System for 

Tracking Multiple Regional Objects, US Patent Number 5,406,289, issued 11 April 1995. (Assignees: 

IBM, Owego, NY; Colorado State University Research Foundation, Fort Collins, CO) 

b. Aubrey B. Poore, Jr., Method and System for Tracking Multiple Regional Objects by Multi-Dimensional 

Relaxation, US Patent Number 5,537,119, issued on 16 July 1996. (Assignee: Colorado State University 

Research Foundation, Fort Collins, CO) 

c. Aubrey B. Poore, Jr., Method and System for Tracking Multiple Regional Objects by Multi-Dimensional 

Relaxation, filed 16 July 1996, claims approved. (Assignee: Colorado State University Research Foun- 

dation, Fort Collins, CO) 



2.6    Transitions 

Based on mathematical modeling, problem formulations, algorithm development partially supported by 

AFOSR, Lockheed-Martin of Owego, NY was named in September 1996 as the winner of the Best of Breed 

Tracker at Hanscom AFB. (This was a two year long series of contests to determine the nation's best 

tracking system.) Currently, Lockheed-Martin is installing the developed software on 12 U.S. Air Force 

AWACS planes. 

2.6.1 Transition: Boeing (Seattle, WA) 

In December 1996, The Boeing Company (Boeing) of Seattle, WA purchased a non-exclusive license to 

the patented tracking technology and the 1995 CSU Multisensor-Multitarget Tracker. This tracker and 

corresponding data association algorithms sponsored by AFOSR are being further developed for use in 

multisensor applications such as the F22 advanced fighter airplane, the Bl and B2 bombers, and NATO 

AWACS fusion problems. Aubrey B. Poore is assisting Boeing with further development of the algorithms 

and tracker for these multisensor tracking problems. The Operations Research Department at Boeing is also 

working on further enhancements to the multidimensional assignment problems for track maintenance. 

This project has the potential for significant transitions to Air Force platforms. 

2.6.2 Transitions: ORINCON (San Diego, CA) 

As part of a STTR with Rome Labs, the CSU multidimensional assignment solver was embedded into the 

ORINCON multitarget tracker to develop robust surveillance algorithms. 

2.6.3 Transitions: Lockheed-Martin (Owego, NY) 

Lockheed-Martin of Owego, NY won the Best of Breed Tracker held at Hanscom AFB, as announced in 

September 1996, for the best tracking system in the nation for the next update to AWACS. (Mitre Corpora- 

tion administered the final tests over 1995 and 1996.) Although many corporations competed in this national 

contest, the final short-list of contestants were ORINCON, Wagner and Associates, Harris Corporation, and 

Lockheed-Martin of Owego, NY. 

The Lockheed-Martin tracking system was based on the 1993 CSU Tracker developed at Colorado State 

University and delivered to Lockheed-Martin (then IBM-Federal Systems) in early 1994. This tracking system 

was an evolution of three previous tracking systems developed for IBM-Federal Systems and incorporated 

the research findings supported by both IBM and AFOSR. 

In the contest itself, Lockheed-Martin won or tied for first on 82% of all the various tests. What is 

more, the ability to adapt the width of the sliding window developed for track maintenance and the memory 

and throughput requirements significantly affected the win. The multidimensional assignment problem is 

responsible for the latter. Lockheed-Martin has a contract with the Department of the Air Force to install 



this tracker on 12 AWACS airplanes; this contract is in progress. 

2.7    Software: 1995 CSU Multisensor/Multitarget Tracking System 

The multisensor/multitarget tracker is composed of three parts: tracker, a modeler for generating different 

tracking scenarios, and a graphical display for viewing different characteristics of the computed tracks. 

2.7.1 The Tracker 

The 1995 Tracker has been designed to address the following issues: 

a. Transformations of the data to a common coordinate system 

b. Registration and misalignment problems 

c. Improved data structures for gating and hypothesis management 

d. Homogeneous or heterogeneous sensors 

e. Stationary or moving platforms 

f. Synchronous or asynchronous measurements 

g. Multiple models for target dynamics and maneuver detection 

2.7.2 The Modeler 

a. Generates random maneuvering targets using different dynamic models in three dimensional space. 

b. Supports multiple fixed scanning sensors. 

c. Possible extensions include support for nonrandom (input defined) targets, systematic clutter and 

moving sensors. 

2.7.3 The Graphic Output Systems 

a. Supports a variety of output devices, both interactive and hardcopy. 

b. Designed for multisensor environment with flexible input requirements. 

c. Supports color postscript output. 



3    Formulation of the Data Association Problem 

The goal of this section is to explain the formulation of the data association problem that governs large 

classes of data association problems in centralized or hybrid centralized-sensor level multisensor/multitarget 

tracking. The presentation is brief; technical details are presented for both track initiation and maintenance 

in [31] for nonmaneuvering targets and [32] for maneuvering targets. These works also contain expressions 

for the likelihood ratios Ltl...iN used in the score in equations (3.3) and (3.4). The formulation presented 

here is of sufficient generality to cover the MHT work of Reid [50], Blackman and Stein [9], and modifications 

by Kurien [22] to include maneuvering targets. As suggested by Blackman [9], this formulation can also be 

modified to include target features (e.g., size and type) into the scoring function. 

The data association problems for multisensor and multitarget tracking considered in this work are gen- 

erally posed [4, 9, 25, 31, 32] as that of maximizing the posterior probability of the surveillance region (given 

the data) according to 

Maximize {pffr^'iP)!7 G r} f3-1) 
where ZN represents N data sets, 7 is a partition of indices of the data (and thus induces a partition of the 

data), T* is the finite collection of all such partitions, T is a discrete random element defined on T*, 70 is 

a reference partition, and P(F = 7 | ZN) is the posterior probability of a partition 7 being true given the 

data ZN. The term partition is defined below; however, this framework is currently sufficiently general to 

cover set packings and coverings [25]. 

Consider N data sets Z(k) (k = l,...,N) each of Mk reports {z£ },J^=1, and let ZN denote the cumulative 

data set defined by 

*(*) = {*<*}£li     and    ZN = {Z(1),...,Z(N)}, (3.2) 

respectively. In multisensor data fusion and multitarget tracking the data sets Z{k) may represent different 

classes of objects, and each data set can arise from different sensors. For track initiation, the objects are 

measurements that must be partitioned into tracks and false alarms. In our formulation of track maintenance 

[31, 32], which uses a moving window over time, one data set will be tracks and remaining data sets will 

be measurements which are assigned to existing tracks, as false measurements, or are assigned to initiating 

tracks. In sensor level tracking, the objects to be fused are tracks [9]. In centralized fusion [9], the objects 

may all be measurements that represent targets or false reports, and the problem is to determine which 

measurements emanate from a common source. 

We specialize the problem to the case of set partitioning [31] defined in the following way. First, for 

notational convenience in representing tracks, we add a dummy report zfi to each of the data sets Z(k) in 

(3.2), and define a "track of data" as (z^,..., z^) where ik and z£ can now assume the values of 0 and z§, 

respectively. A partition of the data will refer to a collection of tracks of data wherein each report occurs 



exactly once in one of the tracks of data and such that all data is used up; the occurrence of a dummy report 

is unrestricted. The dummy report z* serves several purposes in the representation of missing data, false 

reports, initiating tracks, and terminating tracks [31]. The reference partition is that in which all reports 

are declared to be false. 

Next, under appropriate independence assumptions one can show [31] 

p(Y = yO I ZN)  =L1- 11 A-ti-tAT, (*■*) 
V '     ' ' (ti,...,t/v)€7 

Li^.-in is a likelihood ratio containing probabilities for detection, maneuvers, and termination as well as 

probability density functions for measurement errors, track initiation and termination. Then, if c^...^ = 

— In Li1...iN, 

■In 
P(7 | ZN) 

E       Cii-iw- (3.4) 
(»I,---.«N)€7 

Ph° I z"). 

Using (3.3) and the zero-one variable z^...^ = 1 if (*i,... ,1M) € 7 and 0 otherwise, one can then write the 

problem (3.1) as the following N-dimensional assignment problem: 

Minimize 
Mi           MN 

/ s '" /_^ cii--iN
zh--iN 

ii=0        i/v=0 

Subject To: 
M%           MN 

E    " 5Z zh-iN = 1.     l'l = !,-• 
12=0            tjv=0 

.,Af!, 

E"- E E ■••Ez*i-«" 
tl=0        t),_i=0iM.i=0        iy=0 

= 1, 

for ik = 1, • • •, Mk and k = 2, ..,AT 
Mi          AC AT _ 1 

(3.5) 

1, 

E-" E ZM-W==I' *JV = I,...,MN, 
»1=0        iN_i=0 

^i-ijv € {0,1} for all ti,...,tjv, 

where co—o is arbitrarily defined to be zero. Here, each group of sums in the constraints represents the fact 

that each non-dummy report occurs exactly once in a "track of data". One can modify this formulation to 

include multi-assignments of one, some, or all the actual reports. The assignment problem (3.5) is changed 

accordingly. For example, if z,* is to be assigned no more than, exactly, or no less than n*fc times, then the 

" = 1" in the constraint (3.5) is changed to " <, =, > n* ,n respectively. Modifications for group tracking 

and multiresolution features of the surveillance region will be addressed in future work. In making these 

changes, one must pay careful attention to the independence assumptions that need not be valid in many 

applications. 

An important observation is that the likelihood ratio has the form L^-in = L^ •••Lik •■•LiN, where 

each Lik = L{k (i\,..., i/v), i.e., it is history dependent. Thus, these likelihood ratios are not separable. Also, 

8 



each Lik is sensor dependent. 

For tracJfc maintenance, we use a sliding window of N data sets and one data set containing established 

tracks [31, 32]. The formulation is the same as above except that the dimension of the assignment problem 

is now N + l and it is this problem that is addressed in the next section on algorithms. This sliding window 

is further discussed in Section 7. 

4    Overview of the Lagrangian Relaxation Algorithm 

Now that we have discussed the general form of the iV-dimensional problem (3.5), we will now discuss 

its solution within the framework of Lagrangian relaxation. The algorithm will proceed iteratively for 

Jb = l,2,...,iV — 2. At each step a two-dimensional assignment problem will be solved and upon termination 

a near-optimal solution for the original iV-dimensional problem will be obtained. The problem which will 

be solved at step k is the following (N - k + l)-dimensional problem with one change in notation. If k = 1, 

then the index notation for IQ and LQ must be replaced with ii and Mi, respectively. 

Minimize £     £   "" £ c^..,^^ 
/fc_l=Oifc+i=0        iN=0 

Affc+i MN 

Subject To: £   ■• • £ <-£+\-i* = 1,        for h-i = 1,.. .,Lk-i, 
**+i=0        t)v=0 

£*-i   Af*+2 MN 

£ £ - £ <:/£,.,„ = i.    fi* «m = i %■ 
/fc_l=0   tfc+2 *N=0 

Lu-\   Mi,+i Mp-i    Mp+i MN 

£ £- £ £ •••£«+U,:=1. (4-D 
Jik_i=o n+i       tp_1=Oip+i=o      tiv=o 

for ip = 1,..., Mp and p = k + 2,..., N — 1, 
Lk-i   Afj,+i MN-I 

££-£ «i~* = i.    ** * = i. • • ■,"*, 
U_1=0   H+l »AT-1=0 

•^ri^+x-i» € {°> 1J     f°r ^ '*-l.»*+l. ■ • • .»AT- 

Again, we assume that all variables with exactly one non-zero index are well defined in order to ensure 

that a feasible solution exists. This assumption is valid within the framework of the tracking environment 

[31, 32], where these variables correspond to false reports from the sensor. 

4.1    The Lagrangian Relaxation Assignment Problem 

The (N — k + l)-dimensional assignment problem (4.1) obtained in step k of the algorithm has (N — k + 1) 

sets of constraints. Associated with each of the last (N — k — 1) sets of constraints is a (Mp + l)-dimensional 

multiplier vector up = (uj, U\, ..., up
M ) where u£ = 0 for p = k + 2,..., N and is included only for notational 



N 
P cN-k+i      + Y uf N-fc+l 

convenience. This problem is then relaxed to a two-dimensional problem by incorporating the final (N-k-l) 

sets of constraints into the objective function value. This is shown below in (4.2). 

$N_k+1(uk+2,...,uN)    =   Minimize   <f>N-k+1(z
N-k+1;uk+2,.. .,uN) = 

Lk-i    Mk+i MN 

Minimize ^J     2J   ''' E 
ifc-l=Oifc + i=0        iN=0 |_ p=fc+2 

N       Mp 

- E E< (42) 
p=k+2 ip=0 

Mk+i    Mk+2 MN 

Subject To: E     E   -ECU51'        for Jfc_! = l,...,Lfc-i, 
tfc+i=0tfc+2=0        ijv=0 

lk-i    Affc+2 MN 

E     E-E«'^^.       forifc+1 = l,..,M,+1, 
J,._l=0tfc+2=0        iN=0 

<:^li-iy&i°'^    forall^-i.ü+i,...,^. 

One of the major steps in obtaining good sub-optimal solutions is the maximization of $N-k+i {uk+2 ,-..,u  ) 

with respect to the multipliers (uk+2,... ,uN). It can be shown that $N-k+i is concave, continuous, and 

piecewise affine function of the multipliers (u*+2,... ,uN) [46, 51], so that the maximization of this function 

is one of nonsmooth optimization. This issue is discussed further in Section 4.2.2. 

4.2    Properties of the Lagrangian Relaxed Assignment Problem 

For the evaluation of the function $N-k+1, we show that an optimal (or sub-optimal) solution of this relaxed 

problem can be constructed from that of a two-dimensional assignment problem. Then, the nonsmooth 

characteristics of $N-M-I are addressed, followed by a method for computing the function value and a 

subgradient. 

4.2.1    Evaluation of $jv-fc+i 

Next, we will describe how we can evaluate (4.2) and some of the properties of this problem. For each pair 

(ijk-i.tfc+i) define an index set (jk+2,-- -JN) = jk+2(h-i,h+i),- ■ ■ , JN(fc-i,«*+i)) and a new cost value 

c?    .•      by 

(jk+2,...,JN)    =    argmin{c£_i*£i...i„+   £  u? 
AT 

P ip = 0,l,...,Mpandp = k + 2,...,N}, 
p=k+2 

«L,A+,    =   «£**,..*+£;«£    for (^,^0* (0,0), (4.3) 
p=k+2 
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Afk+2 MN \ N 

4 =   E -Emin °'coV+tU+ E < 
ifc+2=0       «iv=0 ( p=fc+2 

It is important that we point out that the computation required to evaluate (4.3) consumes 95% of the total 

time in the solution of the problem [46, 52]. Using (4.3) we can rewrite (4.2) as the following two-dimensional 

assignment problem. 

Lk-\    Mk+i N      Mp 

$N_k+1(u
k+2,...,uN)    =    Minimize   E     E   cL,u+izLi»,+1 "   E   E u% 

(fc_i=Otfc + i=0 p=k+2ip=0 

Mk+i 

Subject To: E   *Liu+i = *' for lk~l = ^ • ■ • >L*-i> (4-4) 

Lfc-i 

E   ZLIH+. 
= *> forifc+1 = l,...,Mfc+i, 

^.^€{0,1}. 

An efficient method for solving this is based on the auction algorithm developed by Bertsekas [6, 7, 8] for 

the symmetric and asymmetric two-dimensional assignment problem. 

One may prove theorems that that an optimal solution of (4.2) can be computed from that of (4.4) and 

vice versa. Furthermore, if the solution of either of these two problems is e-optimal, then so is the other. 

These results can be found in [46]. 

4.2.2    The Nonsmooth Optimization Problem 

Next, one may show that $N-*+I (U*
+2

 , • • •, uN) is piecewise affine, concave and continuous in (uk+2,..., uN), 

so that the problem of maximizing $N-k+i(uk+2,..., uN) is one of nonsmooth optimization [26]. 

There is a large literature on such problems, e.g., [18, 19, 21, 23, 30, 53, 54, 56], and we have tried 

a variety of methods including subgradient methods [54] and bundle methods [18, 19, 21]. Of these, we 

have determined that for a fixed number of nonsmooth iterations (e.g., twenty), the bundle trust method 

of Schramm and Zowe [53] provides excellent quality solutions with the fewest number of function and 

subgradient evaluations, and is therefore our currently recommended method. 

4.3    Restoration of Feasibility: A Recovery Procedure 

The next objective is to explain a recovery procedure, i.e., given a feasible (optimal or sub-optimal) solution 

w2 of (4.4) (or wN~k+1 of (4.2)), generate a feasible solution z
N~k+1 of equation (4.1) which is close to w2 in 

a sense to be specified. We first assume that no variables in (4-1) are ^reassigned to zero; this assumption will 

be removed shortly. The difficulty with the solution wN~k+1 is that it need not satisfy the last (N-k-1) sets 

of constraints in (4.1). (Note, however, that if w2 is an optimal solution for (4.4) and wN~k+1, satisfies the 

relaxed constraints, then wN~k+1 is optimal for (4.1).) The recovery procedure described here is designed to 
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preserve the zero-one character of the solution w2 of (3.4) as far as possible: If w?k_lik+l = 1 and lk-i ^ 0 or 

ik+i # 0, the corresponding feasible solution zN~k+1 of (4.1) is constructed so that z?f
hl!£l1ih+3...iff = 1 for 

some (ik+2, ■ ■ • ,*yv)- By this reasoning, variables of the form z^^t--«* can be assigned a value of one in the 

recovery problem only if iujj0 = 1. However, variables z^*1..^ will be treated differently in the recovery 

procedure in that they can be assigned either zero or one independent of the value u^0. This increases the 

feasible set of the recovery problem, leading to a potentially better solution. 

Let {(/t-i(i*),i*+i(i*))}ffc=o be an enumeration of indices (lk-i,ik+i) of w2 (or the first two indices of 

wN~k+1) such that wfh_l{lk)iih+lllk) = 1 for (/fc_i(ffc).**+i(J*)) # (0,0) and (lk-i(lk),h+i(lk)) = (0,0) for 

lk = 0 regardless of whether wl0 = 1 or not. To define the (N - fc)-dimensional assignment problem that 

restores feasibility, let 

N-k _    JV-M-1 
hik+2--iN ifc-i(Jk)«fc+i('k)»Jfe+2-"«JV 

* .   -       ■   - - (4.5) C«l('l2-fc)«2((l2-.k)«3('23-fc)---»k(lt-lfc)ifc + 1(lfc)it+2- --iN 

for lk = 0,..., Lk and for all (ifc+2,..., IN) , 

where 

lm-k     =     lm ° lm+1 ° ■ ■ • ° lk-l(h) 

=   Ulm+i(lm+2---lk-i(lk))) (4-6) 

for m = 1,... ,k — 1, 

and o denotes function composition. 

Then, the (N - fc)-dimensional assignment problem that restores feasibility is 

Lk     Affc+2 MN 

Minimize       £   £   ••• £ C-^ä-s» 
lfc=0i*+2=0        tjv=0 

Afn+2 MN 

Subject To: ]T   • •• £ <,^2...iN = 1,        for lfc = 1,...,!*, 
»*+2=0 iN=0 

l>k   Afit+s MN 

EE-E C-« = *•    for ifc+2 = lj • ■ • >Mk+2' 
lk=0   ik+3 »AT=0 

X*   M&+2 Mp-i    Mp+i MN 

EE-E E ■••£*K,-«* = 1. (4-7) 
/n=0 tfc+2 tp_i=0tp+i=0        tjv=0 

for ip = 1,..., Mp and p = k + 3,..., N - 1, 
L,,   Mfc+2 MN-I 

EE- £ *&■■<* = ^    for^ = i,..,MW, 
J),=0 t),+2 tjv_i=0 

z^+2-i/v e (°»!}   for a11 J*»»*+2, • • ■ ,*JV. 
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Let Y be an optimal or feasible solution solution to this (N - A;)-dimensional assignment problem (4.7). The 

recovered feasible solution zN is denned by 

z?-        = < 

1,     if il = il(il2-*),*2 = »2(il2---*),*3 = h(hz-k),---. 

h = ik(lk-i,k),h+i = ik+i(h) and Yikik+2ik+3...iN = 1   } (4.8) 

0,    otherwise 

Said in a different way, the recovered feasible solution zN corresponding to the multiplier set (uk+2,..., uN) 

is then defined by 

Z«l(ll2-.-*)»2('l2 ••■t)«3(l23-.   k)--ik(.lk-l,k)ik + l(h)ik+2--'N   ~   \ , 

where lm-k is defined in (4.6) and o denotes function composition. 

4.4 The Upper and Lower Bound 

The upper bound on the feasible solution is given by 

Mi M\ 

ii=0        is=0 

where the lower by $N(U
3

> • • • >uN) for any multiplier value (u3,...,uN). In particular, we have 

$N(u3,...,uN)<$N(ü3,...,üN)<VN(zN)<VN(zN) 

where (u3,..., uN) is any multiplier value, (ü3,..., üN) is a maximizer of $AT(U
3
, • • •, uN), zN is an optimal 

solution of the multidimensional assignment problem (4.1) and zN is any recovered feasible solution. 

4.5 Summary of the Lagrangian Relaxation Algorithm 

Given the multidimensional assignment problem (4.1) and the presentation above, one can summarize the 

algorithm as follows. 

Algorithm 4.1 (Lagrangian Relaxation Algorithm) To construct a high quality feasible solution, de- 

noted by zN, of the assignment problem (4-1), proceed as follows: 

1. Initialize the multipliers (uk+2,...,uN), e.g., (uk+2,...,uN) — (0,...,0). 

2. Fork=l,...,N-2,do 

(a) Form the Lagrangian relaxed problem (4-2) from the problem (4-1) by relaxing the last (N - k - 1) 

sets of constraints. 
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(b) Use a nonsmooth optimization technique to solve 

Maximize {$N-k+i I up € RM"+1 for p= fc + 2,. ..,N with ug = 0 being fixed } (4.9) 

where $N..k+i(uk+2,...,uN) is defined by equation (4.2). 

(c) Given an approximate or optimal maximizer of (4.9), say (ufc+2,..., uN), letw2 denote the optimal 

solution of the two-dimensional assignment problem (4-4) corresponding to this maximizer of 

<l>N_k+1(u
k+2,...,uN). 

(d) Formulate the recovery {N - k)-dimensional problem (4.7), modified as discussed in Section 4.3 

for sparse problems. At this stage, zN as defined in (4-8) contains the alignment of the indices 

{ii,...,ik+i}- 

5    Other Relaxations 

In this section, we briefly discuss four continuous relaxations for the problem (4.1). 

5.1 The First Relaxation 

The first relaxation is to 

REPLACE zhik+1...ik+N   6 {0,1} with 0 < zlkik+1...ik+N < 1 for all lk,ik+u...,ik+N- (5-1) 

Notice, however, that the constraints in (4.1) along with the non-negativity condition in (5.1) imply the 

upper bound of one in (5.1). Thus, we could just as well consider the 

5.2 The Second Relaxation 

REPLACE zlhik+1...ik+N   G {0,1} with 0 < zikik+1...ih+N for all lk,ik+i, ■. -,ik+N- (5.2) 

5.3 The Third Relaxation 

The third relaxation is the Lagrangian relaxation of all constraints along with the relaxation (5.2) and is 

equivalent to the dual problem defined by the linear programming problem (4.1) with the relaxation (5.2) 

Mk k+N   MP 

Maximize       - ]£ uh ~   £   £ < 
lh=0 p=fc+l «p=0 

k+N 

Subject To:       clkih+l...ik+N +   £  t£ > 0 (5.3) 
P=fc+i 

for all lkik+i ■ --ik+N for which Qfc,ifc+1 ik+N is defined. 
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where u? is the multiplier corresponding to the constraint 

Mk    Mk+i Mp.i    Mp+i Mk+N 

Ifc=Otfc+i=0        ip_1=Oip+i=0        ik + N=0 

for ip = l,...,Mp and p= k,...,k + N and where UQ = 0 for all p. 

1 = 0 

5.4    The Fourth Relaxation 

The fourth relaxation is a Lagrangian relaxation of the last TV-1 constraint sets combined with the relaxation 

(5.2) i.e., it is a partial dual, and is given by 

where 

Maximize     $k+N (uk+2 ,-■-, uk+N) (5.4) 

$k+N(u      , ■ ■ ■, u       ) = Minimize 

Subject To: 

ktfc-t-l"-tfc + N 

<j>k+N(z;uk+\...,uk+N) 

Mk    Mu+i Mk+N k+N 

= S 53 ■■■ 53   c«**»+i-«*+«r + 53 < *< 
Jfc=0tt+i=0        i*+nr=0 |_ p=fc+2 

fc+N    Mp 

- £ IX 
p=fc+2 tp=0 

53 ••• 53 *j*i*+i-*»+N =!» /* = i,---,Af*, 
*fc+i=0        tfc+jv=0 

Mk    Mfc+2 Mk+N 

53   53    "   53   zUifc+i-tfc+^ = !.    Ü+1 = l,.-.,Mt+i, 
ifc=0 tfc+2=0        tfc+w=0 

0 < 2/fcin+i-tfc+AT < 1 for all lk,ik+i,..-,ik+N- 

5.5 The Fifth Relaxation 

Finally, a fifth relaxation is the same as in the fourth, but using (5.1) instead of (5.2). 

5.6 The Relation Between the Relaxations 

The major point that we wish to make in this section is that the four relaxations (a) the two linear program- 

ming relaxations based on (4.1) with either (5.1) or (5.2), (b) the full (linear programming) dual of (4.1) 

and (5.2) as given in (5.3) and (c) the partial or Lagrangian relaxation dual given in (5.4) all give the same 

objective function value at their respective optima. The first three relaxations ((a) and (b)) are solved using 

linear programming techniques such the simplex method or interior point methods, while the third is solved 

using the methods of nonsmooth optimization [18, 19]. What is more, each of these provides the same lower 

bound for the optimal solution of (4.1) with the zero-one constraints. 
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6    Some Numerical Experiments 

This section presents results of our numerical simulations that are designed to measure the effectiveness of 

the Lagrangian relaxation algorithm, both in terms of execution time and solution quality. All computations 

were performed on an IBM RS/6000-550. We have compared three bundle methods and conclude that the 

bundle trust method of Schramm and Zowe [53] is the most effective of the three. (We have investigated 

several subgradient methods, but they have not been competitive with these bundle methods on this class of 

problems (4.9).) This study is strongly related to the complexity study in Section 6.1 where we demonstrate 

that 90-99% of the computational costs are due to the evaluation of the relaxed cost coefficients in equation 

(4.3). Section 6.1 also presents simulations that suggest, for the tested problem class, that the execution 

time of a real-time implementation of the relaxation algorithm is linear in the number of feasible variables 

or arcs in the layered graph. Finally, Section 6.2 presents solution and time quality results for relaxation as 

compared to two different greedy methods. 

6.1    Numerical Complexity 

Since reliable analytical results for complexity can be derived for worst case situations only, we have focused 

instead on simulated computational complexity to show that the dominant cost is the evaluation of the 

relaxed cost coefficients (4.3). To demonstrate this, we plot the execution time versus the number of arcs 

for a five-dimensional problem class with an average Mk = 25 for k = 1,...,5 in Figure 6.1. The cost 

coefficients were randomly generated using a uniform distribution over the interval [-100,-1]; the times 

are averages over 50 randomly generated problems. These problems were also generated so that they do 

not decompose. (For highly decomposable problems, the time required to solve the problems is generally 

sublinear in the number of arcs [41].) Figure 6.1 shows the results for 20 and 50 nonsmooth iterations. 

For each case, the upper line represents the overall execution time and the lower line, the time spent 

in the evaluation of the relaxed cost coefficients (4.3). Generally, 90-99% of the execution time is spent 

on the search procedure (4.3) needed for the evaluation of the relaxed cost coefficients. The amount of 

time between the lower and upper lines represents the amount of time spent in the auction algorithm [7], 

nonsmooth optimization solver, and data structure manipulations. Thus, the use of a sophisticated and 

highly efficient nonsmooth optimization, such as the bundle trust method of Schramm and Zowe [53], is 

warranted. 

The fact that 90% of the execution time is spent in the evaluation of the relaxed cost coefficients (4.3) 

indicates a focal point for execution time improvement. For a given multiplier vector (u3,..., un), we observe 

that each candidate relaxed cost coefficient computation is independent. As a result, a coarse parallel 

implementation of Algorithm 4.1 wherein the candidate cost coefficient evaluations are parallelized (either 

through a vector pipeline or separate processors) should yield a tangible improvement in overall execution 

time. This parallelization is limited to (4.3); general parallelization of combinatorial optimization algorithms 
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Figure 6.1: Number of Arcs vs. Solution Times in Seconds 

is much more complex. The reader is referred to [27, 28] for more information. 

Finally, a rather interesting aspect of this particular problem class is that the execution time for Algo- 

rithm 4.1 is linear in the number of assignable variables or arcs. Although we have seen similar behavior 

over other problem classes, we are reluctant to conjecture that it is valid over all problem classes. 

6.2    Solution Quality 

Having settled on this bundle trust region method for the nonsmooth optimization phase, we next compare 

the solution quality for the relaxation algorithm with that of two greedy-based methods: randomized greedy 

and max regret with variable depth exchange. 

The max regret with variable depth exchange algorithm was recommended by Balas and Saltzman [2] 

for fully dense three-dimensional assignment problems with integer cost coefficients. Our implementation 

of this algorithm differs from the Balas and Saltzman code in that it is designed for sparse problems with 

floating point costs and the use of the unconstrained zero index. Thus, the results that follow do not negate 

their findings. 
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The randomized greedy algorithm is motivated by the Greedy Randomized Adaptive Search Procedure 

(GRASP, cf. [14, 24]), which has been successfully applied to several integer programming problems but 

has not, to our knowledge, been adapted to the multidimensional assignment problem. For this problem, a 

basic greedy algorithm constructs a solution one assignment at a time. At each step, the method augments 

the current partial solution with the feasible assignment that has the best (i.e. lowest) cost. In the case 

of multiple choices, the element selected is the one that is lexicographically smallest. Since false alarm 

assignments are feasible, the resulting solution is feasible for the original problem. 

The GRASP motivated extension to this basic greedy approach, which we call randomized greedy, also 

constructs a feasible solution one assignment at a time. At each step, the algorithm randomly chooses an 

assignment from a set of lowest cost feasible assignments. Again, because the false alarms are feasible, the 

resulting solution is feasible for the original problem. The overall algorithm selects the best of a set of feasible 

solutions, each of which is built from a different random sequence. It is easy to implement the algorithm 

so that the initial solution is the regular greedy solution, which thus ensures that the randomized greedy 

solution is always as good as the basic greedy. 

The randomized greedy procedure is not adaptive because the cost values of the remaining feasible 

assignments do not change after an assignment is added to the partial solution. The implementation also 

does not use a local search procedure. Therefore, randomized greedy is not a true GRASP, in which both 

an adaptive feature and local search method are expected. 

We have used our implementations of max regret with variable depth exchange and randomized greedy 

to determine the comparative effectiveness of the relaxation algorithm in a real-time context. The test 

problems were five dimensional with averages sizes Mk = 8 for k = 1,..., N. (The reason for the small size 

it that the branch and bound algorithm would otherwise run for months before the optimal solutions were 

obtained.) The cost coefficients were again randomly generated using a uniform distribution over the interval 

[-100.0, -1.0]. All solution values were normalized to the optimal solution. Thus, in Figures 6.2, 6.3 and 6.4, 

the horizontal line at 100.0 indicates the normalized optimal function value obtained by branch-and-bound. 

the lower bound to the optimal solution is obtained by maximizing the dual function $N-k+i(u3,...,uN) 

for N = 5, and the upper lines correspond to the function values obtained from the various sub-optimal 

solutions, with the particular methods shown in the graph legends. 

Some of the statistics for Figure 6.2 can be summarized as follows: the recovered feasible solution from 

relaxation is, on average, within 2% of the optimal value. For these fifty problems the average run times are 

0.28 seconds for relaxation with 10 iterations and 1.68 seconds with 500 iterations. A significant advantage 

of the algorithm is that it produces both a lower and upper bound that gives an upper bound on the duality 

gap. Note the quality of the lower bound provided by maximizing the dual $/v-*+i(«3,-- -,un) using 10 

nonsmooth iterations and the small gain obtained by allowing the nonsmooth solver to converge with a 

maximum number of iterations set to 500. (We observe much smaller duality gaps for tracking problems 

and for randomly generated problems using a Gaussian distribution.) The average approximate duality gap 
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Figure 6.2: Relaxation 5D: 25% of arcs free 

obtained using the recovered feasible solution as an upper bound and the computed lower bound is 3.4% of 

the optimal value. There are at least two ways to potentially improve this lower bound. First, one could 

use the merit function developed in the work of Poore and Rijavec [39, 42], which can provide larger relaxed 

objective function values than the $;v-*+i(u3>... ,un) values used in the current work. The second method 

is due to Balas and Saltzman [1] who presented a set of facet inequalities for improving the lower bounds in 

three-dimensional assignment problems. To our knowledge, inequalities of this type have not been developed 

for problems with dimension greater than three, but their use may be helpful for the current problem. 

Figure 6.3 shows the solution values obtained from the max regret with variable depth exchange method 

[2], the relaxation algorithm with 10 nonsmooth iterations, the optimal solution value and the lower bound, 

all of which are normalized so that the optimal is 100.0. The average objective function values are 134.0 

for max regret, 102.0 for relaxation and 100.0 for the optimal solution. The average run times over these 

50 problems were 0.35 seconds for max regret with variable depth exchange and 0.28 seconds for relaxation 

with 10 iterations. The relaxation algorithm gave superior solution quality in less time. 

Figure 6.4 compares the randomized greedy using 10 and 10,000 passes with that of relaxation. Again. 

19 



z 
o 
H 
U z 

> 

DO 
o 
D 
U 
Ö 
< 
s 
o 
z 

180 

170 

160  - 

150 

140 

130 

120 

- 

1 

i 

!      5 

 1 1  1     I 

Max Regret With Vari 

- 
Ü      !i 
i!     !i 
Ü     !i 
i'.     ! i 
i i    i | 

- 
i '.    !  i 
i i   !   i 
i  !   !   i 
i   !  !    i 
i   ! !    i 
i   ! !     i 

!!     i 

1 

A 
!i 
!i 
! 

i    \    h 
i   r, 

!!     i ' 
!!     \! 
H      i 

i   i 
i   i 
i i 
\ i 

i 
i              .' 
t             .' 

i  i j 

\ / i                        /, 

1    i            .'-■,       /   ' 

- ii 
ii 
i 1    / 1          /      -' 

i         / 
■(         i 

\  '■ 
\ I 

1    / \        I 
\       i 
j     i 
\   / 

- 

Relaxation Solution Value  e- 
Relaxation Lower Bound 

h Exchange Solution Value   
Optimal Solution Value   

«     |\ 
1 
ii 
i! 

1 
i i 
i ! 

1 1 
/   i 

1    i 
i     i 

i 
i 
i 

) 
ii 
11 

) i 
i  i 
'   i 
i    i 
i     i 
i      i 
i      i 

i 
i 

,i 

10 20 25 30 
PROBLEM NUMBER 

45 

Figure 6.3: Relaxation and Max Regret 5D: 25% of arcs free, 10 NSO iterations 

the lower bounds and solution values are normalized to the optimal. Certainly, as the number of passes 

increases, the solution quality from the randomized greedy algorithm improves from an average value of 

150.0 for 10 passes to 127.0 for 10,000 passes, but once again, the quality is far from that of the relaxation 

algorithm, which has an average value of 102.0. The average run times were 0.28 seconds for relaxation with 

10 nonsmooth iterations and 0.49 seconds for randomized greedy with 10 passes and 187.62 seconds with 

10,000 passes. Again, the relaxation algorithm performs quite well on these test problems with respect to 

speed and exceptional solution quality. 

We have also experimented with several different local search techniques as a post-processor with disap- 

pointing results. The improvement for sparse problems has been minimal compared with the computational 

cost. This may be due to the fact that the data structures used in our implementations for these sparse 

problems have not been particularly amenable to local search. For large and fully dense problems, as in the 

work of Balas and Saltzman [2], the opposite can be true. For the sparse problems that arise in tracking, 

the relaxation algorithm consistently provides excellent quality solutions, with the duality gap less than 4% 

for all parametric studies considered thus far. As such, local search has little chance to provide significant 
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Figure 6.4: Relaxation and Randomized Greedy 5D: 25% of arcs free, 10 NSO iterations 

quality improvement; the computational cost seems to rule out the benefit. 

7    Track Initiation and Maintenance 

In this section we explain a multi-frame assignment formulation to the track initiation and maintenance 

problem. The continued use of all prior information is computationally intensive for tracking, so that a 

window sliding over the frames of reports is used as the framework for track maintenance and track initiation 

within the window. The description here is based on earlier work [37], but an improved version can be found 

in the work of Poore and Drummond [35]. 

The method as explained in this section uses the same window length for track initiation and maintenance 

after the initialization step. The process is to start with a window of length N + 1 anchored at frame one. 

In the first step there is only track initiation, in that we assume no prior existing tracks. In the second and 

all subsequent frames, there is a window of length N anchored at frame k plus a collection of tracks up to 

frame k. This window is denoted by {k; k + 1,..., k + N}. The following explanation of the steps is much 
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like mathematical induction in that we explain the first step and then step k to step k + 1. 

7.1    Track Maintenance: Step 1. 

Let 

be an enumeration of all those zero-one variables in the solution of the assignment problem (4-1) (i.e., 

Zhi2-iN+i = V excluding the following: 

1. All zero-one variables with exactly one nonzero index in the (N + l)-tuple. (These correspond to false 

reports.) 

2. All variables for which (11,12) = (0,0).   (The latter can correspond to tracks that initiate on frames 

three and higher or are false reports.) 

Now set T2(l2) = {zii{i3)>Zh(h)) and add to this enumeration {T2(f2)}^2=i the remaining points from the 

data set Z(2) that do not belong to any of the tracks in the above list. This list is {z?2{h) \ where 

M2>M2. Finally, we add the zero index Z2 = 0 is added to the enumeration to specify (ii(0),i2(0)) = (0,0) 

that is used to represent false reports and tracks that initiate on frame k + 2 or later. 

Suppose now that the next data set, i.e., the (N + 2)th set, is added to the problem. To explain the costs 

for the new problem, one starts with the hypothesis that a partition 7 er* being true is now conditioned 

on the truth of the pairings on the first two frames being correct. The likelihood function is given by 

L-y   = J^ lJl2i3...iN + 2 

('2,»3,---,«JV+2)€7 

where 

' L(zZ)L(zl,...,z»;+l), if/a=0, 

Li2i3iN+2 = l   L(T2(l2))L(zl,...,z?N
+

+l),   Hl<l2<L2, 

^(zl{l2),zl,...,z^+l), HL2 + l<l2<M2 

Next, define the cost coefficients cl2i3...iN+2 = -lnLi2i3...iN+2 with corresponding zero-one variables 

zi2i3...{N+2. Then the track maintenance problem 

Maximize {L7 | 7 € T* } 

can be formulated as the following multidimensional assignment 

Ml      M3 %+2 

Minimize       ]CX)""   S   c«2»3-^+azbt3-»N+a 
'2=0*8=0 «IV+2=0 
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M3 MN+2 

Subject To:        53 • • •   53   zi3i3...iN+3 = 1,    /2 = 1, • • •, Af2, 
13=0        »JV+2=0 

M2    M4 M/v+2 

XI 53    ""     53    z'2ts-«iv+2 = !.      «3 = l,---,-W3,i 
J2=0i4=0        ijv+2=0 

M2    M3 Wp-i    M,+i M/v+2 

LL'"      Z^ 2^      '"       2^       *W"»JV + 2   =   ^ 
i2=0 t'3=0        ip_i=Oip+i=0        tw+2=0 

for ip = 1,..., Mp and p = 4,..., TV + 1, 

Mi    Mi Mjv+2-1 

53  53    "       53       Z'2i3   •iiV+2 = !>      «JV+2 = l,...,MN+2, 
'2=0 «3=0 ijy+2-l=0 

^2i3-tN+2 € {0,1} for alH2, »3, •••,*'AT+2- 

Here, the zero-one variables zi3i3---iN+2 have the interpretation 

1,    if l2 = 0 and lz$, z?3,..., z£^ | represents an initiating track 

1,   if 1 < h < L2 and jzf3,..., 2^ } is assigned to track T2 (l2 

*hia-iN+2 = *    1,   if £2 + 1 < k < M2 and {z? (j2) > 4 > • • •' ^2} are assigned 

as a track 

0,   otherwise v.     ' 

7.2    Track Maintenance: Step k. 

At the beginning of the fctn step, we solve the following (N + l)-dimensional assignment problem. 

> . 

(7.2) 

(7.3) 

Mk    Affc+i Mk+N 

Minimize        53   53   '"   53   C
'*H+I~**+N

Z
'*'*+I-ü+" 

Jfc=0tj,+i=0        ik+N=0 

Subject To: 53   '"   53   z'kik+i-ik+N = *>    i* = l,---,Mfc, 
«fc+i=0        *fc+/v=0 

Mfc     Afn+2 Mk + N 

53 53 " 53 Z'**»+I-*»+J* = x> **+i = ii---.Af*+i, (7-4) 
'fc=0«'j,+2=0        ik + N=0 

Mk    Mk+i Mp-i    Mp+i Mk+N 

2^, 2-j   " z^   Z^ "''  Z^ zu»*+i--ik+N = !> 
Ijl=0in+i=0        ip_i=0ip+i=0        t),+N=0 

for ip = 1,..., Mp and p = fc + 2,..., iV + k - 1, 

53 53 " 53 zikik+i-ik+N =!» *fc+N = i,...,Mfc+N, 

2Jn,tfc+1-ü+Ar £{0,1} for all/fc,ü+i,-..,ü+^- 

The first index lk in the subscripts is used to enumerate the set of tracks {Tfc(i*)}zfc=i where Tk{lk) = 

{zh(h), ■ ■ ■ ,zih{h)} is a track of data from the solution of the problem prior to the formulation of (7.4) 
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,Mfc 
the set of reports on scan k, i.e., iz* {h)\   *        , that are not associated with any of these tracks; and, the 

usual place holder jz,* (0) = z% = Tk(0)\. 

Basic Assumptions 

Suppose problem (7.4) has been solved and let the solution, i.e., those zero-one variables equal to one, be 

enumerated by 

{(h(h+i),ik+i(lk+i),...Jk+N(h+i))}tk
+V=i (7-5) 

with the following exclusions. 

1. All zero-one variables for which (lk,ik+i) = (0,0) are excluded. Thus, tracks that initiate or false 

reports on frames (ifc + 2) and higher are excluded from the list. (This former rule is somewhat 

arbitrary in that these tracks could be included in the list.) 

2. All zero-one variables for which lk = 0 and exactly one nonzero index arrears in the remaining indices 

{ijt+i,...,ik+N} are excluded. These correspond to false reports on frames p = k+ 1,.. .,k + N. 

3. All variables zlkik+1...ik+rf for which (ik+u-■ • ,»*+JV) = (0,0,...,0) for some 1 < lk < Lk are excluded 

in the enumeration (7.5). Any solution with this feature corresponds to a terminated track. 

Given the enumeration (7.5), one now fixes the assignments on the first two index sets in the list (7.5). 

Define 
_ f [n {ik (ifc+o) .Oit+i)}, if i < h{ik+i) < Lk 

Tk+1(lk+1) - I  |^ ^ (lk+1)),z^+\(lk+1)} ,   if Lk + 1 < lk(lk+i) < Mk 

Thus, consider the enumeration 

{(lk(lk+x),ik+i(lk+i))}th
+V=i- (7-6) 

Then, for lk+i = l,...,Lk+i, the lk+i-th such track is denoted by Tk+i{lk+i) = {^(ifc^fc+i^.z^Ofc+i)} 

and the (N + l)-tuple [Tk+i(lk+i),z^,... .z**1*^} will denote a track Tk+i{lk+i) plus a set of reports 

lz*+2,...,z*+1+N\, actual or dummy, that are feasible with the track Tk+i(lk+i).  To this list, we add 

those reports that are not part of the tracks on scan (A; + 1), namely, { U*"!',1,,, .. J f,        T ■ Finally, 

we add the zero index lk+x = 0 is added to the enumeration to specify (lk(fl),ik+i(0)) = (0,0) that is used 

to represent false reports and tracks that initiate on frame k + 2 or later. 

The corresponding hypothesis about a partition 7 € T* being true is now conditioned on the truth of the 

Lk+i tracks existing at the beginning of the TV-frame window. (Thus, the assignments prior to this sliding 

window are fixed.) The likelihood function is given by 

L"l = |_J_ -klli + ltfc+2 •tk + l+JV 

(Jfc + l,«k + 2i---.U + l + lv)€  7 
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where 

Lik+iik+,-ik+1+N = I   L(Tk+l(lk+1))L(z£l,...,z£2+Z),   ifl</fc+1<Lfc+1 

Next, define the cost and the zero-one variable by 

> . 

•fc+2      *>k + l + N cik+1ik+2---ik+1+N    —       lnij|fc+1jfe+2...ilfe+1+JV _    lni/Xi,+1(u+i)2,fc 

1,   if {ztXl---,^*} is assigned to r,+1(Zfc+1) 
Zlk + lik + 2"-ik + l + N , 

0,   otherwise 

(7.7) 

respectively, so that the track extension problem, which was originally formulated as 

Maximize {L7 | 7 € T*} , 

can be expressed as exactly the same multidimensional assignment in (7.4) but with k replaced by k + 1. 

Thus, we do not repeat it here. 

8    Hot Starts 

Having explained the basic algorithm, we now turn to the problem of generating good initial feasible primal 

solutions and dual solutions for use in track maintenance. 

8.1    Hot Starts: An Initial Primal Zero-One Solution for Frame k + 1 

Suppose we have solved problem (4.1) and have enumerated all those zero-one variables in the solution of 

(4.1) as in (4.8). Add the zero index lk+i = 0 (and any tracks that might initiate on frames k + 2, so that 

the enumeration is 

{(l*(l*+i),tVn(lfc+i), • • ■ tik+rfilk+imft+U (8.1) 

With this enumeration one can define the cost by 

and the two-dimensional assignment problem 
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^2 = Minimize ^       J^     cl+iiN+k+l
z?k+iiN+k+i = v*(**) 

Subject To: ]P     ^2
fc+1iw+t+1 = *>    '*+i = *> • • • >Lk+i, (8-3) 

ifc + 1 

/fc+i=0 

z?k+iiN+k+l 
€ f0'1* for a11 /'*+i'»Ar+*+i. 

Let to be an optimal or feasible solution to this two-dimensional assignment problem and define 

1,   if (ik+i,...,iN+k) - (ik+i(h+i,■ ■ ■ ,ik+N{h+i)) 

and wik+lik+1+N = 1 for some lk+i = 1,..., Lk+i 

or if {lk+i,ik+i+N) = (0,0) 

0,    otherwise 

This need not satisfy the constraints in that there are usually many objects left unassigned. Thus, one can 

complete the assignment by using the zero-one variables in (4.1) with A; replaced by k + 1 with exactly one 

non-zero index corresponding to any unassigned object or data report. 

^U+VU + JVU+l+JV ' 
>. (8.4) 

8.2    Hot Starts: An Initial Dual Multiplier Solution for Frame k + 1 

From the solution of the problem (3.5) via a Lagrangian relaxation scheme based on the relaxation (4.2) one 

has multipliers (u? } for p = k + 2,..., k + N from the maximization of the dual problem (4.2) or from 

the linear programming solution of the dual problem (5.3). To obtain good initial multipliers for the fourth 

relaxation (5.4) of the (N + l)-dimensional assignment problem (4.1) with k replaced by A; + 1 (in both 

equations), we simply use (uf ) for p = k + 3,..., k + 1 -I- N where {u-+1+^) +1+" is obtained as the 

dual multipliers arising from the solution of the two-dimensional assignment problem (8.3) corresponding to 

the second index in the variable zf.^i^^..,. 

9    Technical Information for the 95-95 Contract 

9.1    Editorships 

a. Associate Editor of Computational Optimization and Applications 

b. Member of the IMACS Technical Committee on Computational Optimization 
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9.2 Scientific Collaborators and Graduate Students 

9.2.1 Colleagues 

Oliver E. Drummond, Ph.D. and P.E. (Consulting Engineer; 10705 Cranks Rd.; Culver City, CA 90230; 

Email: 200-0961@mcimail.com;) 

9.2.2 Ph.D. Students 

a. Alexander J. Robertson, Ph.D. (c/o Logicon Geodynamics, Inc.; 5450 Tech Center Drive, Suite 301; 

Colorado Springs, CO 80919; Phone: (303) 581-4756; email: ajr@lagrange.math.colostate.edu) 

b. Peter J. Shea 

c. Timothy Trenary 

9.3 Publications 

a. T. N. BARKER, J. A. PERSICHETTI, A. B. POORE, JR., AND N. RIJAVEC, Method and system for 

tracking multiple regional objects. US Patent Number 5,406,289, issued 11 April 1995. 

b. S. L. CHAFFEE, A. B. POORE, N. RIJAVEC, R. GASSNER, AND V. VANNICOLA, A centralized fusion 

multisensor/multitarget tracker based on multidimensional assignments for data association, in Kadar 

and Libby [20], pp. 114-125. 

c. A. DONTCHEV, W. W. HAGER, B. YANG, AND A. B. POORE, Optimality, stability and convergence 

in nonlinear control, Applied Mathematics and Optimization, 31 (1995), pp. 297-326. 

d. M. HASAN AND A. B. POORE, Analysis of bifurcation due to loss of linear independence and strict 

complementarity for penalty methods for solving constrained optimization problems, Journal of Math- 

ematical Analysis and Applications, 201 (1996), pp. 756-785. 

e.  , Bifurcation analysis for singularities on a tangent space for quadratic penalty-barrier and multi- 

plier methods for solving constrained optimization problems, Part I, Journal of Mathematical Analysis 

and Applications, 197 (1996), pp. 658-678. 

f.  , Multidimensional assignments and multitarget tracking, in Partitioning Data Sets, I. J. Cox, 

P. Hansen, and B. Julesz, eds., vol. 19 of DIMACS Series in Discrete Mathematics and Theoretical 

Computer Science, Providence, RI, 1995, American Mathematical Society, pp. 169-198. 

g.  , Bifurcation problems for some parametric nonlinear programs in Banach spaces, SIAM Journal 

on Control and Optimization, 34 (1996). 
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h. A. B. POORE, S. L. CHAFFEE, A. J. ROBERTSON III, N. RIJAVEC, AND P. J. SHEA, Multisen- 

sor/multitarget tracking algorithms based on fast data association algorithms, in Proceedings of the 

Fifth Annual HPC Symposium, F. Blitzer, ed., Honeywell, Inc., 1995. 

i. A. B. POORE AND O. E. DRUMMOND, Track initiation and maintenance using multidimensional 

assignment problems, in Network Optimization, P. M. Pardalos, D. Hearn, and W. Hager, eds., vol. 450 

of Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, 1997, pp. 407-422. 

j. A. B. POORE, O. E. DRUMMOND, AND P. J. SHEA, Multisensor and multitarget tracking using 

multidimensional assignment problems, in 1997 Proceedings of the 1997 IRIS National Symposium on 

Sensor and Data Fusion, Boston, MA, 14-17 April 1997. 

k. A. B. POORE AND N. RIJAVEC, Target height estimation using multiple range and angle measurements, 

in Proceedings of the 5th Conference on Operational Research, T. Hunjak, L. Martic, and L. Neralic, 

eds., Rab, Croatia, October 1995, Croatian Operational Research Society, pp. 215=-224. 

1. A. B. POORE AND A. J. ROBERTSON III, A new multidimensional data association algorithm for 

multisensor-multitarget tracking, in Signal and Data Processing of Small Targets 2561, 0. E. Drum- 

mond, ed., Proceedings of SPIE, 1995, pp. 448-459. 

m.  , A new Lagrangian relaxation based algorithm for a class of multidimensional assignment prob- 

lems. To appear in Computational Optimization and Applications, 1997. 

n. A. B. POORE, A. J. ROBERTSON III, AND P. J. SHEA, Lagrangian relaxation based algorithms for 

fast data association, in Kadar and Libby [20], pp. 184-194. 

o. A. B. POORE, JR., Method and system for tracking multiple regional objects by multi-dimensional 

relaxation. US Patent Number 5,537,119, issued 16 July 1996. (Assignee: Colorado State University 

Research Foundation, Fort Collins, CO). 

p.  , Method and system for tracking multiple regional objects by multi-dimensional relaxation.  US 

Patent, filed 16 July 1996. (Assignee: Colorado State University Research Foundation, Fort Collins. 

CO). 

9.4    Participation/presentations at meetings, conferences, seminars, etc. 

a. The multidimensional assignment approach to multiple target tracking, Hughes Aircraft, October, 

1995. 

b. Multisensor and Multitarget Tracking Using Multidimensional Assignment Problems, invited hour 

presentation at the National Symposium on Correlation, 17 January 1996. Work has been written up 

for distribution to Air Force Command. 
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c. Fast Data Association Algorithms for MHT Applications, invited hour presentation at the Annual 

ONR/NRaD Workshop on Tracking San Diego, 8 February 1996. 

d. Track Initiation and Maintenance in Tracking Posed as Mulitdimensional Assignment Problems, invited 

45 minute presentation at the Conference on Network Optimization Problems, 12 February 1996, 

Gainesville, FL. 

e. Tracking and Assignments, invited 30 minute presentation at the AFOSR Tracking Workshop at Rome 

Labs, Rome, NY, 4 April 1996. 

f. Track Initiation and Maintenance Using Multiscan Windows, ONR/NRaD IRST Workshop, San Diego, 

CA, 17 October 1996. 

g. A framework for bifurcation problems in abstract optimization: a preliminary report, Geometry Center, 

IMA Workshop on computational methods for control and dynamical systems, 18 October 1996. 

h. Multidimensional assignment problems in surveillance, INFORMS Meeting, Atlanta, GA, 6 November 

1996. 

i. Multisensor and Multitarget Tracking and the New MHT: MDA, IRIS Meeting at MIT LL, 14 April 

1997. 

j. Hot Starts for Track Maintenance in Multisensor-Multitarget Tracking, SPIE Conference, San Diego, 

CA, July, 1997. 

k. Multisensor Multidimensional Assignment Target Tracking, Boeing, Seattle, WA, August, 1997 

9.5 Transitions 

The most significant transition in the last year is to The Boeing Company (Boeing) in Seattle, WA. Repeated 

under this category is a brief summary of the Best of Breed Tracker Contest at Hanscom AFB and win by 

Lockheed-Martin (of Owego, NY) since it was not included in the 1996 Progress Report. These transitions 

are discussed in Section 2. 

9.6 New Discoveries, Inventions, and Patent Disclosures 

The use of multidimensional assignment problems in track maintenance continues to be highly patentable 

area of work. Listed below are two such inventions as well as a summary of existing patents arising from the 

AFOSR supported research. 
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9.6.1 New Discoveries/Inventions 

a. "Hot Starts for Track Maintenance," disclosed to Colorado State University on August 15, 1997. 

b. The Colorado State University Patent Committee has reviewed the disclosure "Track Maintenance in 

Multisensor Tracking" (funded in part by AFOSR) and has decided to pursue patenting/licensing of 

this discovery. Disclosed May 4, 1997. 

9.6.2 Patents Under Review and Claims Approved 

Aubrey B. Poore, Jr., Method and System for Tracking Multiple Regional Objects by Multi-Dimensional 

Relaxation, U.S. Patent Application, Serial Number 08/682904, filed 16 July 1996. 

9.6.3 Patents Issued 

a. Thomas N. Barker, Joseph A. Persichetti, Aubrey B. Poore, Jr., and Nenad Rijavec, Method and 

System for Tracking Multiple Regional Objects, U.S. Patent Number 5,406,289, issued 11 April 1995. 

b. Aubrey B. Poore, Jr., Method and System for Tracking Multiple Regional Objects by Multi-Dimensional 

Relaxation, U.S. Patent Number 5537119, filed 14 March 1995, issued on 16 July 1996. 
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